skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Maaz_ur Rehman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The factorization method of Schrödinger shows us how to determine the energy eigenstates without needing to determine the wavefunctions in position or momentum space. A strategy to convert the energy eigenstates to wavefunctions is well known for the one-dimensional simple harmonic oscillator by employing the Rodrigues formula for the Hermite polynomials in position or momentum space. In this work, we illustrate how to generalize this approach in a representation-independent fashion to find the wavefunctions of other problems in quantum mechanics that can be solved by the factorization method. We examine three problems in detail: (i) the one-dimensional simple harmonic oscillator; (ii) the three-dimensional isotropic harmonic oscillator; and (iii) the three-dimensional Coulomb problem. This approach can be used in either undergraduate or graduate classes in quantum mechanics. 
    more » « less